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Abstract—In this paper, we propose a silent self-stabilizing
asynchronous distributed algorithm for constructing a k-
clustering of any connected network with unique IDs. Our
algorithm stabilizes in O(n) rounds, using O(log n) space per
process, where n is the number of processes. In the general case,
our algorithm constructs O(n

k
) k-clusters. If the network is a

Unit Disk Graph (UDG), then our algorithm is 7.2552k+O(1)-
competitive, that is, the number of k-clusters constructed by
the algorithm is at most 7.2552k + O(1) times the minimum
possible number of k-clusters in any k-clustering of the same
network. More generally, if the network is an Approximate Disk
Graph (ADG) with approximation ratio λ, then our algorithm
is 7.2552λ2k +O(λ)-competitive. Our solution is based on the
self-stabilizing construction of a data structure called the MIS
Tree, a spanning tree of the network whose processes at even
levels form a maximal independent set of the network. The
MIS tree construction is the time bottleneck of our k-clustering
algorithm, as it takes Θ(n) rounds in the worst case, while
the rest of the algorithm takes O(D) rounds, where D is
the diameter of the network. We would like to improve that
time to be O(D), but we show that our distributed MIS tree
construction is a P-complete problem.

Keywords-Self-stabilization, maximal independent set, MIS
tree, k-clustering, competitiveness.

I. INTRODUCTION

Consider a simple connected undirected graph G =
(V,E), where V is a set of n nodes and E a set of edges.

For any nodes p and q, we define ‖p, q‖, the distance from

p to q, to be the length of the shortest path in G from

p to q. Given a non-negative integer k, a k-cluster of G
is defined to be a set C ⊆ V , together with a designated

node Clusterhead(C) ∈ C, such that each member of C
is within distance k of Clusterhead(C). A k-clustering of

G is a partition of V into distinct k-clusters.

A major application of k-clustering is in the implementa-

tion of an efficient routing scheme in a network of processes.

Indeed, we could rule that a process that is not a clusterhead,

communicates only with processes in its own k-cluster, and

that clusterheads communicate with each other via virtual

“super-edges,” implemented as paths in the network.

Ideally, we would like to find a k-clustering with the

minimum number of k-clusters. However, this problem is

known to be NP-hard [13]. Instead, we propose here an

asynchronous distributed silent self-stabilizing algorithm to

construct O(nk ) k-clusters in any arbitrary network with

unique IDs. If the network is a Unit Disk Graph (UDG),

then our algorithm is 7.2552k+O(1)-competitive, that is, it

builds a k-clustering which has at most 7.2552k+O(1) times

as many clusters as the minimum cardinality k-clustering.

Related Work: Self-stabilization [10] is a versatile property,

enabling an algorithm to withstand transient faults in a

distributed system. A self-stabilizing algorithm, after tran-

sient faults hit and place the system in some arbitrary state,

enables the system to recover without external (e.g., human)

intervention in finite time.

There are several known asynchronous self-stabilizing dis-

tributed algorithms for finding a k-clustering of a network,

e.g., [9], [7], [3]. The solution in [9] stabilizes in O(k)
rounds using O(k log n) space per process. The algorithm

given in [7] stabilizes in O(n) rounds using O(log n) space

per process. The algorithm given in [3] stabilizes in O(k ·n)
rounds using O(k log n) space per process.

In [6], an asynchronous silent self-stabilizing algorithm

that computes a k-dominating set of at most � n
k+1� processes

is given. A set of vertices D of G is called k-dominating
if every vertex of G is within k hops of some member of

D. Hence, the set of clusterheads of a k-clustering is a k-

dominating set. Then, any k-dominating set can be used to

construct a k-clustering by letting each member of the set

be a clusterhead, and others join their nearest clusterhead.

The k-dominating set construction given in [6] stabilizes in

O(n) rounds using O(log n+ k log n
k ) bits per process.

Note that all these aforementioned algorithms (i.e., [9],

[7], [3], [6]) are written in the shared memory model and

none of them is competitive.

There are several non self-stabilizing distributed solutions

for finding a k-clustering of a network [1], [11], [17], [18].

Of those, only [11] deals with competitiveness. Moreover,

they are all written in message-passing model. Deterministic

solutions given in [1], [11] are designed for asynchronous
mobile ad hoc networks, i.e., they assume networks with

a UDG topology. The time and space complexities of the

solution in [1] are O(k) and O(k log n), respectively. Spohn

and Garcia-Luna-Aceves [18] give a distributed solution to a

more generalized version of the k-clustering problem. In this

version, a parameter m is given, and each process must be a

member of m different k-clusters. The time and space com-
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plexities of this algorithm for asynchronous networks are not

given. Ravelomanana [17] gives a randomized algorithm for

synchronous UDG networks whose time complexity is O(D)
rounds, where D is the diameter of the network. Fernandess

and Malkhi [11] give a k-clustering algorithm that takes

O(n) steps using O(log n) memory per process, provided

a BFS tree of the network is already given. In the special

case that the network is a UDG, their algorithm is 8k+O(1)-
competitive. 1 To the best of our knowledge, there is no self-

stabilizing competitive solution to the k-clustering problem.

Contributions: In this paper, we give a silent self-

stabilizing asynchronous distributed algorithm for construct-

ing a k-clustering in any connected network with unique

IDs. Our algorithm stabilizes in O(n) rounds using O(log n)
space per process. In the general case, our algorithm con-

structs at most 1+�n−1
k+1 � k-clusters. If the network is a UDG,

then our algorithm is 7.2552k+O(1)-competitive, that is, the

number of k-clusters constructed by the algorithm is at most

7.2552k +O(1) times the minimum possible number of k-

clusters in any k-clustering of the same network. This result

is an improvement over that of [11]. More generally, if the

network is an Approximate Disk Graph (ADG) with approx-

imation ratio λ, then our algorithm is 7.2552λ2k + O(λ)-
competitive. UDG and ADG are commonly used to model

the topology of wireless ad hoc networks.

Our solution is based on the self-stabilizing construction

of a data structure called an MIS Tree, a spanning tree of

the network whose processes at even levels form a maximal

independent set of the network. The MIS tree method

was introduced by Fernandess and Malkhi [11]. The MIS

tree construction is the time bottleneck of our k-clustering

algorithm, as it takes Θ(n) rounds in the worst case, and

the remainder of the algorithm takes O(D) rounds, where

D is the diameter of the network. We would like to improve

that time to be O(D), however, that will most likely involve

different techniques, since whether a given process is part

of the Fernandess-Malkhi MIS is a P-complete problem, as

we show in Section VI.

Roadmap: In the next section, we present the model used

throughout this paper. In Section III, we give our self-

stabilizing MIS tree construction. In Section IV, we give

our self-stabilizing k-clustering algorithm. In Section V, we

analyze the competitiveness of our k-clustering algorithm in

UDGs and ADGs. In Section VI, we show that the problem

we solved in Section III is P-complete. Finally, in Section

VII, we give some perspectives. Due to space limitation,

some proofs have been omitted. All proofs are available in

the technical report online at:

http://www-verimag.imag.fr/TR/TR-2011-16.pdf

1Actually, in [11], a k-cluster is defined to have diameter at most k,
while the definition in this paper uses radius k. They give competitiveness
4k + O(1), which is equivalent to competitiveness 8k + O(1) using our
definition of k-cluster.

II. PRELIMINARIES

Computational Model: Consider a simple connected bidi-

rectional network G = (V,E) where V is a set of n
processes and E a set of links. Processes have unique IDs.

By abuse of notation, we shall identify any process with its

ID, whenever convenient.

We assume the shared memory model of computation [10]

, where a process p can read its own variables and those of

its neighbors, but can write only to its own variables. Let

Np denote the set of neighbors of p. Each process operates

according to its (local) program. We call (distributed) algo-
rithm A a collection of n programs, each one operating on a

single process. The program of each process is a finite set of

actions: 〈label〉 :: 〈guard〉 −→ 〈statement〉. Labels are

only used to identify actions. The guard of an action in the

program of a process p is a Boolean expression involving

the variables of p and its neighbors. The statement of an

action of p updates one or more variables of p. An action

can be executed only if it is enabled, i.e., its guard evaluates

to true. A process is said to be enabled if at least one of its

actions is enabled. The state of a process in A is defined by

the values of its variables in A. A configuration of A is an

instance of the states of processes in A. We denote by γ(p)
the state of process p in configuration γ.

Let 
→ be the binary relation over configurations of A
such that γ 
→ γ′ if and only if it is possible for the network

to change from configuration γ to configuration γ′ in one

step of A. An execution of A is a maximal sequence of its

configurations e = γ0γ1 . . . γi . . . such that γi−1 
→ γi for

all i > 0. The term “maximal” means that the execution is

either infinite, or ends at a terminal configuration in which

no action of A is enabled at any process. Each step γi 
→
γi+1 consists of one or more enabled processes executing

an action. The evaluations of all guards and executions of

all statements of those actions are presumed to take place

in one atomic step.

We assume that each step from a configuration to another

is driven by a scheduler, also called a daemon. If one or more

processes are enabled, the scheduler selects at least one of

these enabled processes to execute an action. A scheduler

may have some fairness properties. Here, we assume a

weakly fair scheduler, i.e., it allows every continuously
enabled process to eventually execute an action.

We say that a process p is neutralized in the step γi 
→
γi+1 if p is enabled in γi and not enabled in γi+1, but does

not execute any action between these two configurations.

The neutralization of a process represents the following

situation: at least one neighbor of p changes its state between

γi and γi+1, and this change effectively makes the guard of

all actions of p false.

To evaluate the time complexity, we use the notion of

round. The first round of an execution �, noted �′, is the

minimal prefix of � in which every process that is enabled in
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the initial configuration either executes an action or becomes

neutralized. Let �′′ be the suffix of � starting from the last

configuration of �′. The second round of � is the first round

of �′′, and so forth.

Self-Stabilization and Silence: Let A be a distributed

algorithm. Let P be any predicate on configurations of A.

A self-stabilizes to P if there exists a non-empty subset of

configurations S such that:

1) Every configuration of S satisfies P . (Correctness)
2) Every step of A starting from a configuration of S

leads to a configuration of S . (Closure)
3) Every execution of A, starting from any arbitrary

configuration, contains a configuration of S . (Conver-
gence)

The configurations of S are called the legitimate configura-
tions. Conversely, all other configurations are said illegiti-
mate.

An algorithm is silent if each of its executions is finite.

In other words, starting from an arbitrary configuration, the

network will eventually reach a configuration where none of

its actions is enabled at any process.

Composition: To simplify the design of our algorithm,

we use hierarchical collateral composition [6] which is a

variant of collateral composition [19]. When we collaterally

compose two algorithms A and B, they run concurrently and

B uses the outputs of A in its computations. In the variant

we use, we modify the code of B so that a process executes

an action of B only when it has no enabled action in A.

Definition 1 Let A and B be two algorithms such that
no variable written by B appears in A. The hierarchical

collateral composition of A and B, noted B ◦ A, is the
algorithm defined as follows: (i) B◦A contains all variables
of A and B; (ii) B ◦ A contains all actions of A; (iii)
For every action Gi → Si of B, B ◦ A contains the action
¬C ∧Gi → Si where C is the disjunction of all guards of
actions in A.

We recall a theorem from [6] that gives sufficient condi-

tions to show the correctness of an algorithm obtained by

hierarchical collateral composition.

Theorem 1 B◦A is self-stabilizing w.r.t predicate SP under
a weakly fair scheduler if: (i) A is silent algorithm under a
weakly fair scheduler, and (ii) B converges to SP from any
terminal configuration of A under a weakly fair scheduler.

III. THE MIS TREE

In this section, we first recall the data structure MIS
tree (for Maximal Independent Set tree), introduced in [11].

We define an MIS tree to be a spanning tree rooted at a

given node r, where the set of all nodes at even levels

is a maximal independent set of the network. This data

structure has interesting properties that will be used to

compute a competitive k-clustering, when the network is a

UDG. In the second part of the section, we give a self-

stabilizing algorithm that computes an MIS tree in any

arbitrary identified network within O(n) rounds. There could

be many different MIS trees for a given network and a given

r; the one we construct has the same specification as that

constructed in [11].

A. Definition of MIS Tree

Suppose G = (V,E) is a connected undirected graph. A

set I ⊆ V is an independent set of G if no two distinct

members of I are neighbors in G. An independent set I of

G is maximal if no proper superset of I is an independent

set of G. A spanning tree of G is any connected graph T =
(VT , ET ) such that VT = V , ET ⊆ E and |ET | = |VT | −
1. Any spanning tree becomes a rooted tree by choosing

a distinguished root r; in this paper, all spanning trees are

rooted.

Given a rooted spanning tree T , the level of node p,

Level(p), is defined to be its distance to the root r. The

height of T , noted h(T ), is maxp∈VT
Level(p). Let T (p)

be the subtree of T rooted at any given node p, and define

h(T (p)) to be the height of T (p). The parent of p in T is

p itself if p = r, otherwise it is its unique neighbor q in T
such that h(p) = h(q) + 1.

Definition 2 An MIS tree T of G is a spanning tree of G
rooted at some node r such that the set of nodes at even
levels of T is a maximal independent set of G.

Property 1 Let T be an MIS tree of G. Let I be the maximal
independent set formed by the nodes at even levels of T . If σ
is a path of T of length � (i.e., �+1 nodes), then σ contains
at least  �2� members of I .

1

2 3

4

5 6

78 9

Figure 1: Example of LFMIST.

Assume that an ordering p1, p2, . . . , pn of V is given.

Any rooted tree T of G can be encoded as an n-tuple of

numbers in the range 1..n, as follows. The ith entry of the

encoding of T is j if pj is the parent of pi in T . The lexically
first MIS tree (LFMIST) of G with root r is then defined

to be that MIS tree of G whose encoding is first in the

lexical order of the encodings of all MIS trees of G with root

r. For example, in Figure 1, the members of the maximal

independent set are shown in black and the encoding of the

tree is (1, 1, 2, 1, 3, 5, 8, 4, 6).

B. The Algorithm to construct an MIS Tree

Our self-stabilizing algorithm to construct an MIS tree

is a hierarchical collateral composition of two algorithms:
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MIST ◦ BFST . Algorithm BFST constructs a breadth-

first spanning tree (BFS tree). Then, MIST uses the BFS

tree to compute an MIS Tree of the network in O(n) rounds.

Algorithm BFST : We define a breadth first spanning tree
(BFS tree) rooted at r, for a graph G = (V,E) to be any

spanning tree T rooted at r such that the path, through T ,

from any node p to r has length ‖p, r‖ (the distance from

p to r in G).

Let BFST be any silent self-stabilizing breadth-first

spanning tree algorithm for a network with unique IDs which

works under a weakly fair scheduler. That is, starting from

an arbitrary configuration, BFST converges to a terminal

configuration where a root r and a breadth-first spanning

tree of the G, rooted at r, is output. Henceforth, we denote

by LevelBFS(p) the level of any process p in the breadth-first

spanning tree computed by BFST .

Many silent self-stabilizing breadth-first search spanning

tree algorithms have been given in the literature. See [14]

for one of the first papers on that topic. This algorithm was

designed for arbitrary rooted networks, but it can be easily

adapted to work in arbitrary network with unique IDs by

composing it with a leader election algorithm, e.g., [8]. The

composition of these two latter algorithms stabilizes in O(n)
rounds uses O(log n) space per process.

Algorithm MIST : Let r be the root of the BFS tree

computed by BFST . Let≺ be an order on processes defined

as follows : p ≺ q if and only if (‖p, r‖, p) is smaller

than (‖q, r‖, q) in the lexical ordering of the pairs. Using

the outputs of BFST , MIST computes an MIS tree of

the network that is lexically first w.r.t. to ≺. The formal

description of MIST is given in Algorithm 1. In MIST ,

the program of each process p contains two variables:

- The Boolean variable p.dominator, which determines if

p is in the independent set or not.
- The pointer variable p.parent, which points to the

parent of p in the MIS tree.

Every process p such that p.dominator = true is said

to be a dominator, otherwise it is said to be dominated.

Eventually, the set {p ∈ V | p.dominator} is fixed and forms

a maximal independent set of the network thanks to Action

SetDominator.

To decide of its status dominator/dominated, each process

uses a priority, noted Priority(p), which is defined by

the tuple (LevelBFS(p), p) (n.b., LevelBFS(p) is eventually

equal to the distance of p to the root of the BFS tree).

According to the priorities and the status of its neighbors,

p decides its status as follows: p is a dominator if and

only if all its neighbors q either are dominated or satisfy

Priority(q) > Priority(p), where > is the strict lexical

ordering. According to this rule, the root of the BFS tree is

the node of minimum priority and consequently is eventually

definitely a dominator. All its neighbors becomes dominated,

and so on.

Each process must choose a parent such that the parent

links form a spanning tree, and the set of processes at

even levels is exactly the set of dominator. The root r
sets its parent variable to r. All other processes choose as

parent the neighbor having a status different of their own of

minimum priority. This forces a strict alternation between

status dominator/dominating along every path of the tree.

As the root is at level zero and of dominating status, this

alternation makes the tree an MIS tree.

Correctness and Complexity Analysis: By Theorem 1, to

show the correctness of MIST ◦ BFST , we need only

show that MIST constructs an MIS tree starting from any

configuration where no action of BFST is enabled. In such

a configuration, a BFS tree TBFS rooted at some node is

available. In the following, we denote by r the root of TBFS ,

which will be also the root of the MIS tree.

Lemma 1 below shows that MIST stabilizes in O(n)
rounds after BFST has stabilized.

Lemma 1 Starting from any configuration where no action
of BFST is enabled, if at least n + 1 additional rounds
have elapsed, no action of MIST is enabled.

Proof Outline. Let γ be a configuration where no action

of BFST is enabled. Starting from γ, Priority(p) is fixed

forever for every process p. Let p1,. . . ,pn be the list of

processes ordered by ≺ in γ.

The first part of the proof consists of showing by induction

on the rank of every process in the ordering that all actions

SetDominator are disabled forever after at most n rounds

have elapsed.

Then, the values of Priority(p) and p.dominator are

fixed forever. For any processes, the guard of action SetPar-

ent depends only on those values. Thus, after at most one

additional round, no action of MIST is enabled anymore,

and we are done. �

Let us now consider any terminal configuration γ of

MIST ◦BFST . Let I the set of all dominator processes in

γ, that is, the set of all processes p such that p.dominator =
true in γ. We deduce from the definition of Dominator(p)
that I is an MIS of G.

Consider then the subgraph TMIS induced by the values

of the parent pointers of MIST in γ. We show that

TMIS is a spanning tree of the network rooted at r. The

proof is based on the following technical property: in γ,

Priority(p.parent) < Priority(p) for every process p �= r.

Finally, r is at level zero of TMIS and belong to I . By

induction and using the definition of predicate Parent(p),
we show that a process is in I if and only if its level is

even in TMIS . In other words, TMIS is an MIS tree of the

network.

Hence, we can conclude with Lemma 2 that follows.
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Algorithm 1 MIST , code for each process p

Inputs: LevelBFS(p) ∈ N

Variables: p.dominator: Boolean ; p.parent ∈ Np ∪ {p}
Macros:
Priority(p) = (LevelBFS(p), p)
Dominator(p) = ∀q ∈ Np, P riority(p) < Priority(q) ∨ ¬q.dominator
Parent(p) = if LevelBFS(p) = 0 then p else q ∈ Np | Priority(q) = min{Priority(q′) | q′ ∈ Np ∧ q′.dominator �= p.dominator}

Actions:
SetDominator :: p.dominator �= Dominator(p) −→ p.dominator ← Dominator(p)
SetParent :: p.dominator = Dominator(p) ∧ p.parent �= Parent(p) −→ p.parent ← Parent(p)

Lemma 2 In any configuration where no action of
MIST ◦ BFST is enabled, TMIS is an MIS tree of the
network.

We can require that BFST stabilizes in O(n) rounds and

use O(log n) space per process [14], [8]. By Theorem 1,

Lemmas 1 and 2, we have:

Theorem 2 MIST ◦ BFST is a silent self-stabilizing
algorithm that builds an MIS Tree within O(n) rounds using
O(log n) space per process.

Height of the MIS Tree: The next property establishes a

bound on the height of the MIS Tree computed by MIST ◦
BFST . Below, we illustrate this property with an example

matching the bound. (The proof is in the technical report.)

0

1

2 3

4 5

n− 2 n− 1

Figure 2: Worst case example for MIS tree height.

Property 2 In any terminal configuration of MIST ◦
BFST , the height of the computed MIS tree TMIS of G
is at most 2×D, where D is the diameter of G.

Figure 2 exhibits the upper bound on the height of TMIS ,

depending on the diameter D of the network. Even processes

have the same parent in both TBFS and TMIS , whereas odd

ones have their parent in TMIS at the same level in TBFS .

It is not possible to increase the height of TMIS more than

once per level of TBFS , thus the height of TMIS is at most

twice the one of TBFS , that is 2×D.

IV. k-CLUSTERING OF AT MOST 1 +
⌊
n−1
k+1

⌋
k-CLUSTERS

In this section, we present a silent self-stabilizing algo-

rithm, called CLR(k), which constructs a k-clustering of

at most 1 +
⌊
n−1
k+1

⌋
distinct k-clusters in a directed tree

network. Its stabilization time is O(H) rounds, where H
is the height of the tree. By composing CLR(k) with any

silent self-stabilizing spanning tree algorithm, we obtain a

silent self-stabilizing k-clustering algorithm that builds at

most 1+
⌊
n−1
k+1

⌋
distinct k-clusters in any arbitrary network.

Moreover, we will see in Section V that CLR(k)◦MIST ◦
BFST is a silent self-stabilizing k-clustering algorithm

which is 7.2552k+O(1)-competitive in any UDG network.

The stabilization time of CLR(k)◦MIST ◦BFST is O(n)
rounds and its memory requirement is O(log n) space per

process.

A. Algorithm CLR(k)

Assume that the network is a tree T rooted r.

The formal description of CLR(k) is given in Algorithm

2. CLR(k) builds a k-clustering in two phases. During the

first phase, CLR(k) computes the set of clusterheads, Dom,

which has cardinality at most 1+
⌊
n−1
k+1

⌋
. The second phase

consists of building a spanning forest, where each directed

tree is rooted at a clusterhead and represents the k-cluster

of that clusterhead. Hence, we obtain a k-clustering of at

most 1+
⌊
n−1
k+1

⌋
k-clusters. CLR(k) uses the following three

variables in the code of each process p:

• p.α, an integer in the range [0..2k]. In any terminal

configuration, the set of clusterheads Dom is defined

as the set of processes p such that p.α = k or p.α < k
and p = r.

• p.parentCLR ∈ Np. In any terminal configuration,

p.parentCLR is the parent of p in its k-cluster, unless

p is a clusterhead, in which case p.parentCLR = p.

• p.headCLR. In any terminal configuration, p.headCLR

is equal to the identifier of the clusterhead in the k-

cluster that p belongs to.

Building Dom: The first phase of CLR(k) consists of

building the set Dom as a k-dominating set of T , that is,

a subset of processes such that every process is at most at

distance k from a process in Dom. Dom is constructed by

dynamic programming, starting from the leaves of T . As

previously explained, Dom is defined using the values of

p.α for all p.

Consider any terminal configuration. In this configuration,

p.α = ‖p, q‖, where q is the furthest process in the subtree

of T rooted at p, that will be in the same k-cluster as p.
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Algorithm 2 CLR(k), code for each process p

Inputs: Parent(p) ∈ Np

Variables: p.α ∈ [0..2k] ; p.parentCLR ∈ Np ∪ {p} ; p.headCLR ∈ V
Macros:

IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k
IsClusterHead(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ (p = r))
ShortChildren(p) = {q | (Parent(q) = p) ∧ IsShort(q)}
TallChildren(p) = {q | (Parent(q) = p) ∧ IsTall(q)}
MaxAShort(p) = if ShortChildren(p) = ∅ then −1 else max {q.α | q ∈ ShortChildren(p)}
MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)}
MinIDMinATall(p) = if TallChildren(p) = ∅ then p else min {q ∈ TallChildren(p) | q.α = MinATall(p)}
Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1 else MaxAShort(p) + 1
ParentCLR(p) = if p.α < k then Parent(p) else if p.α = k then p else MinIDMinATall(p)
HeadCLR(p) = if IsClusterHead(p) then p else p.parentCLR.headCLR

Actions:
SetAlpha :: p.α �= Alpha(p) −→ p.α← Alpha(p)
SetParent :: p.parentCLR �= ParentCLR(p) −→ p.parentCLR ← ParentCLR(p)
SetHead :: p.headCLR �= HeadCLR(p) −→ p.headCLR ← HeadCLR(p)

• If p.α < k, then p is said to be short and we have

two cases: p �= r or p = r. In the former case, p is k-

dominated by a process of Dom outside of its subtree,

that is, the path from p to its clusterhead goes through

the parent link of p in the tree, and the distance to this

process is at most k − p.α. In the latter case, p is not

k-dominated by any other process of Dom inside its

subtree and, by definition, there is no process outside

its subtree. Thus, p must be placed in Dom.

• If p.α ≥ k, then p is said to be tall and there is a

process q at p.α − k hops below p such that q.α = k.

So, q ∈ Dom and p is k-dominated by q. Note that, if

p.α = k, then p.α−k = 0, that is, p = q and p belongs

to Dom.

p.α is computed using the two following macros:

• MaxAShort(p) returns the maximum value of q.α for

all short children q of p. If p has no short children,

MaxAShort(p) returns −1.

• MinATall(p) returns the minimum value of q.α for

all tall children q of p. If p has no tall children,

MinATall(p) returns 2k + 1.

According to these macros, p.α is computed by Action

SetAlpha in a bottom-up fashion as follows:

• If MaxAShort(p) + MinATall(p) > 2k − 2, p.α =
MaxAShort(p) + 1.

In particular, If p is a leaf, then MaxAShort(p) +
MinATall(p) = 2k > 2k − 2 and consequently, p.α =
−1 + 1 = 0.

• If MaxAShort(p) + MinATall(p) ≤ 2k − 2, p.α =
MinATall(p) + 1.

To help the reader’s intuition, we summarize below the

important properties of p.α, for any process p. These prop-

erties can be checked in the examples given in Figure 3.

Property 3 In any terminal configuration, for every process
p, we have:

(a) If p.α > 0, then there is some child q of p such that
q.α = p.α− 1.

(b) If p.α > k, then there is a proper descendant q of p
such that q ∈ Dom and q is p.α− k levels below p.

(c) There is a member of Dom within |p.α− k| hops of p.

Constructing the k-Clustering: The second phase of

CLR(k) partitions the processes into distinct k-clusters,

each of which contains one clusterhead. Each k-cluster

contains a k-cluster spanning tree, a tree containing all the

processes of that k-cluster. Each k-cluster spanning tree is

a subgraph of T rooted at the clusterhead, possibly with the

directions of some edges reversed. Furthermore, the height

of the k-cluster spanning tree is at most k.

Each process of Dom designates itself as clusterhead

using Actions SetParent and SetHead. Other processes p
designate their parent (using Action SetParent) as follows:

(1) if p is short, then its parent in its k-cluster is its parent

in the tree; (2) if p is tall, then p selects as parent in its

k-clustering its tall child in the tree of minimum α value.

Finally, identifiers of clusterheads are propagated in a top-

down fashion in their k-cluster using Action SetHead.

Two examples of 3-clustering using CLR(3) are given in

Figure 3. In Figure 3a, the root is a tall process, consequently

it is not a clusterhead. In Figure 3b, the root is a short
process, consequently it is a clusterhead.

B. Correctness

We first show the convergence of CLR(k) from any

configuration to a terminal one. Since computation of the

p.α is bottom-up in T , the time required for those values to

stabilize is O(H) rounds. After that, one additional round

is necessary to fix the ParentCLR variables, because the

values of these variables only depend on the α variables.

Finally, the headCLR variables are fixed top-down within

the k-cluster spanning trees starting from the clusterheads

in O(H) rounds. Hence, it follows that the time complexity
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Figure 3: Examples of 3-Clustering using CLR(3). The root of each tree network is on the right, values of α are indicated,

clusterheads are colored in black, and arrows represent local spanning tree of each k-cluster.

of CLR(k) is O(H) rounds and the following lemma holds.

Lemma 3 Starting from any configuration, CLR(k)
reaches a terminal configuration in O(H) rounds.

We then consider any terminal configuration to show

the closure of CLR(k). The proof begins by formally

establishing the three claims given in Property 3 (Remark 1,

Lemmas 4, and 5).

Remark 1 Property 3.(a) follows immediately from the def-
inition of α.

Below, we prove Property 3.(b).

Lemma 4 In any terminal configuration of CLR(k), for
every process p, if p.α > k, then there is a proper
descendant q of p such that q ∈ Dom and q is p.α − k
levels below p.

Proof. We prove this lemma by strong induction on p.α.

As a base case, if p.α = k + 1, then, by Property 3.(a),

there is a child q of p such that q.α = k, that is q ∈ Dom.

Assume the lemma holds for every p such that k<p.α<a.

Let p′ be a process such that p′.α = a.

By Property 3.(a), there is a child q′ of p′ such that

q′.α = p′.α− 1. By induction hypothesis, there is a proper

descendant q′′ of q′ such that q′′ ∈ Dom and q′′ is q′.α− k
levels below q′. So, q′′ is q′.α−k+1 = p′.α− 1−k+1 =
p′.α− k below p′, and we are done. �

We now prove Property 3.(c).

Lemma 5 In any terminal configuration of CLR(k), for
every process p, there is a process q such that q ∈ Dom
and ‖p, q‖ ≤ |p.α− k|.
Proof. If p.α > k, then, by Lemma 4, we are done.

Consider now any process p such that p.α ≤ k. We prove

the lemma by strong backward induction on p.α.

As a base case, if p.α = k, then p ∈ Dom by definition.

Assume the lemma holds for every p′ such that

a<p′.α≤k.

Let q be a process such that q.α = a and q �= r. Indeed,

if r.α ≤ k, then r ∈ Dom by definition. Let q′ be the parent

of q. We consider two cases.

• Assume q′.α = MaxAShort(q′) + 1. As q.α < k, q is

short and q.α ≤ MaxAShort(q′). So:

q.α < q′.α ≤ k
a < q′.α ≤ k

By induction hypothesis, there is a member of Dom
which is within k− q′.α hops of q′. Then, this process

is within k − q′.α+ 1 hops from q. Now:

a < q′.α
−q′.α < −a
k − q′.α+ 1 < k − a+ 1
k − q′.α+ 1 ≤ k − a
k − q′.α+ 1 ≤ k − q.α
k − q′.α+ 1 ≤ |q.α− k|

So, this process is within |q.α−k| hops from q and we

are done.

• Otherwise, q′.α = MinATall(q′) + 1 and q′.α > k. By

Lemma 4, there is some q′′ ∈ Dom within q′.α − k
hops of q′. Thus, ‖q′′, q‖ ≤ q′.α − k + 1. Then, by

definition of α:

MaxAShort(q′) + MinATall(q′) ≤ 2k − 2
MinATall(q′)− k + 2 ≤ k −MaxAShort(q′)
q′.α− k + 1 ≤ k − q.α

Hence:

‖q′′, q‖ ≤ k − q.α
‖q′′, q‖ ≤ |q.α− k|

So, q′′ is within |q.α−k| hops from q and we are done.

�
We now use Property 3 to complete the correctness proof

of CLR(k).
Since |p.α − k| ≤ k for every p, we can deduce the

following corollary from Property 3.(c).

Corollary 1 In any terminal configuration of CLR(k),
Dom is a k-dominating set of T .

The following lemma shows that every process is in the

k-cluster of a member of Dom.
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Lemma 6 In any terminal configuration of CLR(k), for
every process p, there is a path P = (p1 = p, . . . , pm) such
that: (1) m ≤ k, (2) ∀i ∈ [1..m− 1], pi.parentCLR = pi+1,
(3) pm.parentCLR = pm, (4) ∀i ∈ [1..m], pi.headCLR =
pm, (5) pm ∈ Dom.

Proof. We prove this lemma by strong induction on |p.α−
k|. Note that p.α ∈ [0..2k], thus |p.α− k| ∈ [0..k].

As a base case, if p.α = k, then IsClusterHead(p) =
true. Thus, by definition, p.parentCLR = p and

p.headCLR = p. The path P = (p) verifies each property

stated in the lemma.

Assume the lemma holds for every q such that |q.α−k| <
a.

Let p be a process such that |p.α− k| = a.

If p.α > k, then, by definition of Alpha(p), p.α =
MinATall(p) + 1, i.e., there is some neighbor q of p such

that q.α = MinATall(p). Without loss of generality, consider

the one of smallest identifier, hence p.α = q.α + 1.

Since p.α − k = a, follows q.α + 1 − k = a, that is

q.α − k = a − 1 < a. By induction hypothesis, there is

a path Q = (p1 = q, . . . , pm) leading to a clusterhead pm
such that:

• m ≤ k,

• ∀i ∈ [1..m− 1], pi.parentCLR = pi + 1,

• pm.parentCLR = pm,

• ∀i ∈ [1..m], pi.headCLR = pm.

By definition of ParentCLR(p) and HeadCLR(p),
p.parentCLR = q and p.headCLR = pm, and the lemma

holds.

Otherwise, p.α < k. If p = r, then IsClusterHead(p) =
true and the lemma holds. Consider now the case

p �= r and note q = Parent(p). By definition of

ParentCLR(p), p.parentCLR = q. By definition of

HeadCLR(p), p.headCLR = q.headCLR. We now show

that |q.α−k| < a, i.e., |q.α−k| < |p.α−k| in order to make

use of the induction hypothesis as in the previous case, thus

completing the proof. Two cases have to be distinguished:

• q.α ≤ k, then, by definition of Alpha(q), q.α =
MaxAShort(q) + 1. As p is a short child of q, q.α ≥
p.α+1, and q.α−k > p.α−k. Since p and q are short
processes, |q.α− k| < |p.α− k|.

• q.α > k, then, by definition of Alpha(q), q.α =
MinATall(q) + 1 and:

MaxAShort(q) + MinATall(q) ≤ 2k − 2
(MaxAShort(q) + 1) + (q.α− k) ≤ k

Since (p.α ≤ MaxAShort(q)), then:

(p.α+ 1) + (q.α− k) ≤ k
q.α− k ≤ k − p.α− 1
|q.α− k| < |k − p.α|
|q.α− k| < |p.α− k|

�

Lemma 7 In any terminal configuration of CLR(k), every
k-cluster whose clusterhead is not the root contains at least
a path of k + 1 processes.

Proof. Consider any k-cluster whose clusterhead p
is not the root. Then, p.α = k, p.parentCLR = p,

and p.headCLR = p by definition of IsClusterHead(p),
ParentCLR(p), and HeadCLR(p). Moreover, by Property

3.(a), there is a path (p0, . . . , pk) such that pk = p and

for every i ∈ [0..k − 1], pi.α = pi+1.α − 1 = i.
By Definition of Macro ParentCLR(pj), for every j ∈
[0..k − 1], pj .parentCLR = pj+1. By Definition of Macro

HeadCLR(pj), for every j ∈ [0..k − 1], pj .headCLR =
pj+1.headCLR = pk = p. �

Lemma 8 In any terminal configuration of CLR(k), there
are at most 1 +

⌊
n−1
k+1

⌋
distinct k-clusters.

Proof. By Lemma 7, except for the k-cluster which

contains the root , every k-cluster contains at least k + 1

processes. Thus, there are at most 1+
⌊
n−1
k+1

⌋
k-clusters. �

By Corollary 1 and Lemmas 6 and 8, we have:

Lemma 9 In any terminal configuration of CLR(k), T is
partitioned into at most 1 +

⌊
n−1
k+1

⌋
distinct k-clusters.

From Lemmas 3 and 9, we have:

Theorem 3 In any tree of n processes and height H ,
CLR(k) is a silent self-stabilizing algorithm that partitions
the tree within O(H) rounds into at most 1+

⌊
n−1
k+1

⌋
distinct

k-clusters.

By Theorems 1, 2, and 3, CLR(k) ◦ MIST ◦ BFST
is self-stabilizing, MIST ◦ BFST stabilizes within O(n)
rounds, and O(H) rounds later CLR(k) ◦MIST ◦BFST
reaches a terminal configuration, where H is the height of

TMIS . Now, by Property 2 (page 5), H is bounded by 2D,

where D is the diameter of the network. Hence, from any

initial configuration, CLR(k) ◦MIST ◦ BFST stabilizes

in O(n) rounds.

Theorem 4 In any arbitrary network with unique IDs,
CLR(k) ◦ MIST ◦ BFST is a silent self-stabilizing al-
gorithm that builds at most 1 +

⌊
n−1
k+1

⌋
distinct k-clusters

within O(n) rounds using O(log n) space per process.

V. COMPETITIVENESS OF k-CLUSTERING

Unit Disk Graphs: We now analyze the competitiveness, in

terms of number of clusters, of CLR(k)◦MIST ◦BFST ,

in the special case that the network is a UDG in the

plane, that is, the processes are fixed in the plane, and two

processes can communicate if and only if their Euclidean

distance in the plane is at most one. We first show, in

Lemma 10, that the cardinality of the MIS computed by
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MIST ◦ BFST is bounded by a constant multiple of the

minimum cardinality of any k-clustering, then in Lemma 11,

we show that the cardinality of Clr, the k-clustering built

by CLR(k) ◦ MIST ◦ BFST , is bounded by a constant

multiple of that same minimum.

Lemma 10 For every connected UDG and every k ≥ 1, any
independent set I is of cardinality at most

(
2πk2√

3
+ πk + 1

)

times the cardinality of an optimum k-clustering Opt.

Proof. We make use of a result by Folkman and Graham

[12]. If X is a compact convex region of the plane, let

J ⊆ X such that the distance between any two distinct

members of J is at least 1. Then, the cardinality of J is

at most
⌊

2√
3
A(X) + 1

2P (X) + 1
⌋

, where A(X) and P (X)

are the area and the perimeter of X , respectively. We observe

that J is any independent set of any UDG in the plane.

Consider any clusterhead p in Opt and the surrounding disk

of radius k centered at p in the plane. All processes that

belongs to the k-cluster of p are within this disk. Due to

the above result, no more than
(

2√
3
(πk2) + 1

2 (2πk) + 1
)

processes can be independent in this disk, thus in the k-

cluster of p. By definition, every process belongs to a k-

cluster. It follows that the cardinality of any independent set

is at most
(

2πk2√
3

+ πk + 1
)

times the one of an optimum

k-clustering Opt. �
We now compare the maximal independent set computed

by MIST ◦BFST with the k-clustering set Clr computed

by CLR(k) ◦MIST ◦ BFST .

Lemma 11 For every connected network and every k ≥ 1,
let I be the MIS computed by MIST ◦ BFST , the cardi-
nality of Clr, the k-clustering built by CLR(k) ◦MIST ◦
BFST is at most 1 + 2

k (|I| − 1).

Proof. By Lemma 7 (page 8), every k-cluster of Clr
contains a path of k + 1 processes (i.e., of length k),

excepted for the k-cluster which contains r. Since Clr is

built on TMIS , by Property 1 (page 3), this path contains

k2 � processes of I \ {r}. Thus, |Clr| − 1 k-clusters of Clr
contain at least k2 � processes of I \ {r}. We have:

(|Clr| − 1)× k2 � ≤ |I \ {r}|
(|Clr| − 1)k2 ≤ |I| − 1
|Clr| − 1 ≤ 2

k (|I| − 1)
|Clr| ≤ 1 + 2

k (|I| − 1)

�
By Lemmas 10 and 11, we deduce that |Clr| ≤ 1 +(
4πk√

3
+ 2π

)
|Opt|, and since 4π√

3
≈ 7.2552, we can claim:

Theorem 5 For every connected UDG and every k ≥ 1,
CLR(k) ◦ MIST ◦ BFST computes a 7.2552k + O(1)-
approximation of the optimum k-clustering in terms of
cardinality.

Approximate Disk Graphs: More generally, if V is a set of

points in the plane, and λ ≥ 1, then we say that G = (V,E)
is an approximate disk graph in the plane with approxima-
tion ratio λ, if, for any u, v ∈ V , ‖u, v‖ ≤ 1⇒ {u, v} ∈ E
and {u, v} ∈ E ⇒ {u, v} ≤ λ. This model has been first

introduced by [2]. It is also known as Quasi-UDG from [15].

Theorem 6 For every connected approximate disk graph in
the plane with approximation ratio λ, and every k ≥ 1,
CLR(k)◦MIST ◦BFST computes a 7.2552λ2k+O(λ)-
approximation of the optimum k-clustering in terms of
cardinality.

Proof. As in the proof of Lemma 10, we make

use of the result of Folkman and Graham, but we then

consider the surrounding disk of radius λk centered at

any clusterhead of Opt. It follows that no more than(
2√
3
(πλ2k2) + 1

2 (2πλk) + 1
)

processes can be indepen-

dent in this disk, and thus no more than that same num-

ber can be in any k-cluster of Opt. It follows that the

cardinality of any independent set in an ADG is at most(
2πλ2k2√

3
+ πλk + 1

)
times the one of an optimum k-

clustering Opt. By Lemma 11 and since 4π√
3
≈ 7.2552, we

are done. �

VI. MIS CONSTRUCTION AND NICK’S CLASS

The time bottleneck of our k-clustering solution is the

MIS Tree construction. Indeed, our algorithm builds a MIS

Tree in Θ(n) rounds in the worst case (Theorem 2, page 5)

and, once the MIS Tree is built, the k-clustering is computed

in O(D) rounds by Theorem 3 (page 8) and Property 2 (page

5). So, we would like to improve that time to be O(D), but

as we shall see below, finding an algorithm with a sublinear

time complexity for computing an MIS tree for a general

network could be very hard, and may be impossible.

Nick’s Class (NC) [4] is defined to be the set of all

problems that can be solved in parallel in polylogarithmic

time with polynomially many processors. Thus, there can be

no deterministic polylogarithmic time distributed algorithm

for any problem which is not in NC. P is defined to be

the set of all problems that can be deterministically solved

in polynomial time. A problem A ∈ P is said to be P-
complete if, given any problem B ∈ P , there is a reduction

of B to A, and that reduction can be computed in parallel

in polylogarithmic time with polynomially many processors.

Thus, NC = P if and only if there is any one P-complete

problem which is in NC.

The question of whether NC = P is considered to be in

the same class of difficulty as the question of whether P =
NP . Just as we justify giving up the search for a polynomial

time algorithm for any problem that we can prove to be

NP-complete, we justify giving up the search for a fast

parallel algorithm for a problem if we can prove that it is
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P-complete. We show that the exact problem solved by our

MIS Tree construction is P-complete.
Given a network G = (V,E), we compute an MIS of

G, with respect to priorities ordering defined in Section III.

Note that there is a natural lexical ordering on the subsets

of V , obtained by writing each subset as an ordered list of

processes. The MIS computed by our algorithm comes first

in the natural lexical ordering (w.r.t. the priorities) of subsets

of V , it is said to be the lexically first maximal independent
set of G.

Let denote by p1, . . . , pn the processes of G, ordered

by priority. Our algorithm takes advantage of an additional

property of priorities: There is a unique local minimum, i.e.,
for any i > 1 there is some j < i such that pj is a neighbor

of pi.
The lexically first maximal independent set problem on

a graph G is equivalent to finding a lexically first maximal

clique in the complementary graph G′, shown by Cook [5]

to be P-complete.
However, our algorithm solves a restricted version of the

LFMIS problem, where the ordering is known to have a

unique local minimum, and thus we need to give separate

proof that this version is also P-complete. It consists of

exhibiting a method to NC-reduce any instance of the P-

complete Circuit Value problem to an instance of the LFMIS

problem with unique local minimum. The Circuit Value (CV)

problem, is defined as the problem of evaluating the last

output of an acyclic Boolean circuit, given that its inputs

are assigned to true. Such a circuit consists of Boolean

assignments (negation, conjunction or disjunction), inputs

and outputs. This problem has been shown to be P-complete

in [16].

Theorem 7 The LFMIS problem with unique local mini-
mum is P-complete.

Although the problem is technically open, Theorem 7

justifies not seeking an O(D) time algorithm for computing

the LFMIS.

VII. PERSPECTIVES

An immediate extension of this work would be to sharpen

the competitiveness’ analysis of our k-clustering in any

UDG. Another possible extension is to try to find another

competitive construction for a UDG which can be performed

in sublinear time. We feel it is worth investigating if it

is possible to design a self-stabilizing k-clustering that is

competitive in any connected network.
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