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Abstract—This paper presents experimental results on a body
area network platform that accurately and precisely captures,
processes, and wirelessly transmits six-degrees-of-freedom inertial
and electrocardiogram data in a wearable, non-invasive form
factor. The platform is designed to be low-energy enabling health
care applications and remote monitoring of workers in harsh
environments. The challenges tackled in this article include the
following: (1) reducing the radio channel contention, (2) reducing
the energy consumption, and (3) managing diverse Quality of
Service (QoS). The system is evaluated regarding to the accuracy
and the energy consumption efficiency.

I. INTRODUCTION

Wireless Body Area Networks (BAN) are formed by
several low-energy wirelessly interconnected biomedical or
inertial sensor devices. The sensors may capture various phys-
iological parameters of the human body (e.g. temperature,
heart rate, Electroencephalography (EEG), Electrocardiogra-
phy (ECG), blood pressure, blood oxygen saturation levels,
etc.) as well as parameters of the physical environment, such
as the amount of sunlight exposure or ambient air quality.
In a typical BAN architecture, sensor data are transmitted
wirelessly to a gateway where the data are forwarded over
Internet to a remote medical server for storage and analysis.
Due to constraints such as energy and computation capability,
nondeterministic sensor failures, radio links instability, and
distrusted environments, designing and deploying a robust
BAN platform is still challenging.

Motivation. The BANs have become a leading approach
for several promising applications in the medical and health-
care field. But despite the rich availability of works, there are
not many fully functional applications that can be actually
employed in real cases. In particular, limited resources in
energy and in radio communications make difficult real-world
deployment. As a result, there is a need for low-energy
communication protocols reducing both traffic contention and
energy consumption. In this paper, we present a BAN platform
monitoring workers who are subjected to hard environmen-
tal conditions during their work. The platform implements
similarity filtering and polynomial interpolation techniques.
These lightweight mechanisms are suitable for low-power
microcontroller and allow to efficiently reduce the amount of
data that must be transmitted. In addition, we show that, even
with an important compression with loss, they still allow to

detect fall or anomaly in heart beat.

Contributions. In this article, we address these challenges
and make the following contributions:

• Firstly, the architecture of the BAN platform is pre-
sented and application scenarios are described. Three
types of signals are considered: electrical activity of
the heart or electrocardiography (ECG), orientation
measurement via a tri-axial gyroscope, and linear ac-
celeration measurement via a tri-axial accelerometer.

• Secondly, similarity filtering and polynomial regres-
sion are proposed to provide large compression while
maintaining high accuracy.

• Finally, the paper presents a scenario allowing to
evaluate the performances of the proposed architecture
in terms of accuracy, efficiency and energy saving.

Novelty. WBANs area has been recently the subject of
intense research by many researchers worldwide and there are
available many good results in all such topics in particular
in efficient physical layer and networking protocols. However,
only a few studies related to the development of practical,
efficient and low-energy WBANs system have been proposed.
In this paper, we experimentally evaluate the accuracy and
efficiency of two mechanisms allowing energy saving while
staying accurate according to the state of the monitored sub-
ject.

The rest of this paper is organized as follows. Section II
provides an overview of previous work insisting on information
which is relevant to the context of this paper: previous experi-
mental BAN architectures and existing standards are presented.
In Section III, an overview of the proposed BAN architecture
is proposed: application scenarios and communication archi-
tecture are detailed. In Section IV, the experimental results on
the platform and performance are presented. Finally, Section
V concludes the contributions of this paper and discusses
potential further work directions.

II. RELATED WORK AND SCOPE

Recent developments in electronics and ultra low power
radio communications have enabled the design of tiny and
smart wearable sensors which can be worn on, or implanted



into, the human body. The resulting Wireless Body Area
Network (WBAN) is currently considered as one of the key
technologies of the future that will enable the emergence of
a wide range of applications, such as Indoor Localization [1],
patient’s insomnia monitoring [2], soldier’s activity monitoring
[3], emotion detection [3], assets protection [4], worker’s safety
monitoring [5], etc.

In order to address the specific requirements and challenges
of WBANs, the IEEE 802.15.6 standard [6] has been re-
cently released. In this context, three main physical have been
proposed (i.e. narrowband, ultra wideband and human body
communications), and both contention-based (e.g. CSMA/CA,
Slotted-Aloha) and time division-based (e.g. TDMA) Medium
Access Control (MAC) protocols have been designed. How-
ever, to the best of our knowledge there are still no commer-
cial or publicly available IEEE 802.15.6 standard compliant
radio transceivers. So, Internet of Things related standards [7]
remain the preferred solution to build short-term and ready-
to-use WBAN solutions [8]. In this context, several WBANs
monitoring platforms [9] have been designed and evaluated,
especially in the context of patient’s health monitoring, using
a combination of existing communication technologies, such as
Bluetooth Low Energy, IEEE 802.15.4 (Zigbee), IEEE 802.11
a/b/g/n (WiFi), and 3G/LTE (cellular).

Despite the increased interest in the WBANs areas, there
have been only a few studies related to the development of
practical, efficient and low-energy WBANs system enabling
the real-time and remote monitoring of physiological param-
eters. Moreover, to the best of our knowledge, the WBANs
network lifetime, energy consumption and quality of service
have not been evaluated in a comprehensive manner.

III. OVERVIEW OF THE PROPOSED BAN PLATFORM

This section describes the wearable BAN platform which
was designed, implemented and evaluated to enable to remote
monitoring of workers in harsh environments. The target ap-
plication scenario is firstly described in what follows, followed
by an overview of the hardware, software and communication
components.

A. Application scenario

In this study, we focus on the remote monitoring of workers
in harsh environment. With 5 fatal injuries per 100.000 workers
and despite its high-income economy, Qatar still exhibits
relative shortcomings in safety performance (this rate is double
that of the European Union) [10]. A part of the injuries is
due to harsh environment, in particular high temperature. As a
result, there is a need to monitor physiological signs (e.g. body
temperature, pulse rate, respiration rate, blood pressure, etc.).
With wearable sensors and BANs, workers can be monitored
remotely and quick assistance can be given if anomalies on the
vital signs are detected. To be practical in such context, a BAN
should be able to send data continuously to a remote server
for storage and analysis, while being energy efficient and ac-
curate. In that purpose, low-power technologies, compression
techniques and filtering are targeted. Moreover, the monitoring
of the body movements (e.g. acceleration, orientation, etc.) can
be useful to implement safety related algorithms, such as fall
detection or activity recognition, and thus to ensure the safety
of the workers.

Fig. 1: Overview of the Ban Architecture

B. Communication Architecture

In this paper, wearable sensors use the IEEE 802.15.4
/ Zigbee standard [11]. Zigbee is a standard defining the
PHY and the MAC layer. Due to its good performance in
terms of energy consumption, Zigbee makes a good candidate
constrained devices such as battery-powered wearable sensors.
CSMA/CA MAC protocol is used by sensors to transmit data
to the gateway node. Zigbee devices can theoretically transmit
up to 250 kbs at 2.4 GHz which is sufficient data rate for
typical WBAN applications. Each node will encapsulate its
sensor data into an 802.1.5.4 MAC frame and transmit it to
the gateway node.

The gateway node aggregates the traffic from the sensor
nodes and forwards it to an access point. Zigbee is used for
the communication with the sensors and IEEE 802.11 / WiFi
for the communication with the access point. CSMA/CA MAC
protocol is used by the gateway to transmit data to the access
point, as shown in Figure 1

C. Algorithms and Applications Layers

In order to enable efficient on-body communications in
terms of latency, delivery ratio and energy consumption, we
designed and implemented two specific algorithms: one filter-
ing algorithm at the WBAN sensor device level, and one data
compression algorithm at the gateway level.

1) Filtering algorithm: As illustrated in Figure 1, sensor
nodes gather sensory information and communicate with the
gateway. With respect to their constraints in computational
power, a lightweight filtering algorithm is implemented. It is
defined to limit the amount of data sent by the sensor nodes. To
form a packet, each sensor aggregates 7 values of each signal
(e.g. acceleration and angular velocity for 6-axis sensors, lead
I and lead II for the ECG sensor). Then, it sends the packet to
the gateway. The filtering algorithm compares the previously
sent packet and the current packet to defines their similarity
by comparing the mean of each signal and by computing the
quadratic distance between them. Let two vectors v and w in
Rn be as follow: v = (v1, v2, ..., vn), w = (w1, w2, ..., wn).

The quadratic distance dq is: dq =
√

1
N

∑N
i=1(vi − wi)2.

If the difference of mean or the quadratic distance between
the two packets is higher than a given threshold (i.e. defined
accordingly to the state of the patient e.g. Table I), the current
packet is sent. Otherwise, a tiny 4-octet packets is sent instead



P1 P2 P3
State of the worker Critical Worrying Normal

Filtering Algorithm Mean threshold 5% 10% 20%
Quadratic distance threshold 2% 5% 10%

Compression Algorithm RMSE Threshold 1% 5% 20%
Maximum polynom order 10 10 10

TABLE I: Thresholds of the filtering and LSPF Data
Compression algorithms.

Fig. 2: Flowchart of the BAN architecture

to inform the gateway of the similarity of the packet with the
previously transmitted packet.

2) Data Compression Algorithm using Least-Squares Poly-
nomial Fitting: As shown in Figure 1, the gateway is respon-
sible for the real-time collection of data from the different
wearable sensor devices. Each sensor is responsible for the
monitoring of specific physiological parameters (e.g. ECG,
EEG, etc.), at a predefined sampling rate, and to send the
corresponding time series to the gateway. This later aggregates
all the received data and transmit them via Internet to a remote
back-end server for further data processing and to enable
timely decision making.

In order to enable efficient and low energy communications
between the deployed gateway and remote back-end server,
we designed and developed a data compression algorithm
using Least-Squares Polynomial Fitting (LSPF). The proposed
algorithm works as follows. For each received time series,
Y i = {Yt; t ∈ T} from a wearable sensor, i, the WBAN
coordinator computes the coefficients of a polynomial P i

t (x) =
anx

n + an−1x
n−1 + ... + a0 of degree n ≤ N which better

fits Y i such that the corresponding Root Mean Squared Error
(RMSE) is lower than a given threshold Emax.

This process is done recursively where the algorithm starts
with a polynomial order n = 1, and keeps increasing it
until the obtained RMSE is lower than the defined error
threshold, Emax. In case, the algorithm is not able to find
a good polynomial fit for the received time series, it divides
it into two sub time series and apply the same logic on
each part of the time series. Finally, once the polynomial
coefficients,{an, an−1, ..., a0;n ≤ N}, are properly identified,
the gateway transmit them to the remote back-end server,
along with the sampling rate, initial and last timestamps of
Y i, instead of the original time series. Based on the received
information, the remote server is thus able to reconstruct
the original time series with an error lower than Emax. The
flowchart of the 2 processes is illustrated by Figure 2.

IV. EXPERIMENTAL EVALUATION

A. Methodology and materials

The system used for experimentation consists of three main
devices:

Fig. 3: a) Shimmer node, b) gateway

Device Man-
ufactor

Shimmer Node Gateway

Microcontroller MSP430 AM37x 1GHz ARM Cortex-A8
Radio TI CC2420 (802.15.4) [15] and

RN Bluetooth module
TI CC2420 (802.15.4) and
Ralink RT2571WT (802.11.b/g)

TX Power 0 dBm Zigbee: 0 dBm, Wifi: 13 dBm
Radio sensi-
tivity

-95 dBm Zigbee: -95 dBm, Wifi: -70
dBm

TX/RX con-
sumption

17.4 mA/18.8 mA Zigbee: 17.4 mA/18.8 mA,
Wifi: 390 mA/270 mA

Battery 280 mAh, 3.7v 8400 mAh, 5V
Sensing capa-
bilities

3-axis Accelerometer, 3-axis
Gyroscope, ECG

None

OS TinyOS Ubuntu 11.10
MAC
protocol

CSMA/CA CSMA/CA (WiFi and Zigbee)

TABLE II: Summary of the platform characteristics.

Sensor Nodes which (Fig. 3.a) consist in five Shimmer
Nodes [12]. The Shimmer node is a small sensor platform
well suited for wearable applications. It low-power communi-
cation capabilities enable long-term data acquisition and real-
time monitoring. In this work, four nodes integrate 3-axis
accelerometer and 3-axis gyroscope and one node is dedicated
to heart monitoring and integrate a 3-lead ECG. Each node is
running with TinyOS [13]. The Shimmer nodes characteristics
are summarized in Table II.

Gateway Node as shown in Figure 3.b, consists of: (i)
a Beagleboard XM [14], (ii) a BeagleTouch Screen (iii) an
802.11 module for Wi-Fi connection and (iv) an 802.15.4
module for Zigbee connection. The Ubuntu 11.10 OS is used
to run the gateway. A lightweight server is implemented on
the platform to perform the forwarding and the polynomial
data compression (LSPF). The gateway characteristics are
summarized in Table II.

Access Point which carries the proper storage, database
and application softwares. It is intended to be highly available
(i.e. 24/7) and be scalable to enable the monitoring of a
large number of patients. The server runs real-time analysis of
sensors data, provides user access to the database at various
levels (e.g. patients, relatives, physicians, etc.) and generates
alarm in case of emergencies.

The signal is amplified, converted to digital on the Shimmer
Node and quantized at a chosen sampling frequency from 1Hz
to 1kHz. The shimmer node then transmits the data (i.e. 7
samples per packet) to the gateway.

B. Experiment parameters and scenarios

Scenario. Three phases of 10 minutes have been defined.
In phase 1, the monitored subject is standing or is sitting
at a workstation. Generally, his movements and his heartbeat
are slow. In phase 2, the subject is walking in a treadmill
at 4 km per second. His legs and arms move faster and his



Fig. 4: Overview of the 3 phases (P1: standing, P2: walking
at 4 km per hour, and P3: running at 10 km per hour)

heartbeat is moderate. In this phase, periodicity in acceleration
and orientation measurements can be noticed. During phase 3,
the subject is running in a treadmill at 10 km per second. His
legs and arms move faster and his heartbeat is high. Again,
we can notice a periodicity in acceleration and orientation
measurements.

C. Performance Metrics

To gain insight concerning the BAM platform perfor-
mances, the following metrics are measured:

Filtering rate is defined as the ratio between the size of
the data received at the gateway after filtering and the size
of the data generated by the biomedical sensors. This metric
measures the efficiency of the similarity filtering.

Data compression ratio of the polynomial approxima-
tion is defined as the ratio between the size of the data received
at the access point and the size of the data received at the
gateway. This metric measures the efficiency of the polynomial
approximation.

Total data compression ratio is defined as the ratio
between the size of the data received at the access point and
the size of the data generated by the biomedical sensors. This
metric measures the efficiency of the entire platform.

Root Mean Square Error (RMSE) represents the sam-
ple standard deviation of the differences between raw signal
generated by the biomedical sensors and the signal received at
the access point after filtering and polynomial approximation.
This metric measures the accuracy of the platform.

D. Results

To quantify the potential of energy saving, the filtering and
LSPF rates have been computed and illustrated on Figures 5
and 6. The efficiency is measured by the gain in size and
the accuracy by the RMSE for both filtering (Fig. 5) and
compression (Fig. 6) processes according to the three states
(P1, P2 and P3) of the subject as described in Table 1. It
represents the average values from the 4 movement sensor
nodes (accelerometer and gyroscope). As expected, with low
filtering thresholds (P1, Table I), the filtering gain does not
exceed 15 %, but also RMSE remains low and does not exceed
0.002 (Fig. 5). Note that 95% of the gain during the filtering
process is obtained during the phase 1, when the subject is
standing. Indeed, during this phase, several successive packets
could be very similar.

With increasing filtering thresholds (P2 and P3, Table
1), the filtering gain is increased; however, RMSE increased
significantly, in particular for P3 (0.011). This increase is
mainly due to the relaxation of the threshold on the quadratic
distance between two successive packets. As a result, for P3,
the filtering is more coarse and the error increases. The filtering
gain for P2 and P3 is also obtained mainly on the phase 1:
93% and 78% respectively.

The compression gain obtained by Least-Squares Polyno-
mial approximation is significant for the three states P1, P2
and P3 (Fig. 6). For instance, the gain is up to 60% for P1
with a very low RMSE; it does not exceed 0.003. However, the
relaxation of the threshold for P2 and P3, does not result in a
large increasing in terms of compression rate (72% and 74%),
despite a significant increase in terms of RMSE (0.023 and
0.032). Note that the approximation gain is obtained during the
three phases in a balanced way, by contrast with the filtering
gain which was mostly obtained during the first phase.

For the ECG signals, the LSPF provides good results,
whereas the filtering is inoperative. The raw ECG signals have
been compared to the compressed signals during the three
phases (Fig.9). Given the periodicity of the ECG signal, the
LSPF provides a low RMSE and a good compression rate
(from 72% to 75%). The graphical representation allows to
visualize the signal difference between the raw and compressed
signals according to RMSE thresholds (0.01 (P1), 0.05 (P2)
and 0.20 (P3)) for the three phases (standing, walking and
running). The signal difference is particularly visible when
the RMSE threshold is the higher (P3). In that level of
compression, the signal is clipped, but the heart beat rate is
still clearly visible.

In Figure 8, raw acceleration signals are compared to the
compressed signals during phases 1, 2 and 3. The differences
are clearly visible for P2 and P3 (see threshold in Table I).
This is particularly significant during the phase 2 and 3, when
the movement is more important.

V. CONCLUSION AND FUTURE WORK

In this paper, we conducted a study on a BAN platforms
with 5 sensor nodes, a gateway and an access point. By
implementing lightweight but powerful filtering and LSPF
data compression, it allows to reduce both the radio channel
contention and the energy consumption, while staying accurate
(e.g. with a low RMSE).

Future works. To be more efficient, the similarity filtering
should be adapted to the signal and a better calibration of
the thresholds could also be a great improvement. Currently,
the levels P1, P2 and P3 are chosen statically. Adapting the
level of compression accordingly to the signal observed is a
direction of our future work. In addition, it seems to us that,
the flow of the data and its periodicity make more suitable
slotted MAC layers that CSMA. As a result, we also plan to
investigate the impact of the MAC layer on the energy saving
and performance.
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P1, P2 and P3 thresholds.
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